If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-140x-136=0
a = 4; b = -140; c = -136;
Δ = b2-4ac
Δ = -1402-4·4·(-136)
Δ = 21776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21776}=\sqrt{16*1361}=\sqrt{16}*\sqrt{1361}=4\sqrt{1361}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-4\sqrt{1361}}{2*4}=\frac{140-4\sqrt{1361}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+4\sqrt{1361}}{2*4}=\frac{140+4\sqrt{1361}}{8} $
| 6.8(x-3.75)=-20.4 | | 3xx4x=360 | | 6w-29=7+5w | | (x-3=2x-7) | | 29−6w=7+5w | | H(n^2)=n-2 | | 20/35=16/b | | (2x-7=x-3) | | y(4y)=180 | | x=1/2(2x-7=x-3) | | y+(4y)=180 | | 4(x-4)^2+x^2=x(x+85)-49x | | 6b+15=-4b-5b | | 3x+6x=4x+9 | | 9x^2−12x+4=0 | | 7/n=42 | | 2x+3=11× | | 4/x-1+7/x+1=-14/x^2-1 | | 9(n-1)=27n | | 8r-6+r=12+2r | | 3(2x-4)+5(7x+9)=8(x+5)-12 | | 3x×-7=12 | | 900=5(x+19) | | (7x+3)(1-4x)=0 | | -12.6+2(x+3)=0.4 | | 3(2x+4)=2+6x=10 | | 9+4h=9.5+8.5h | | F(x)=4x^2+84 | | (60-2x)(30-2x)(x)=0 | | x^2+8^2=12^2 | | 3.3x=46.53 | | 0(x−6)x2−12x+35=0 |